Problem -1: Show that if every element of the group G except the identity element is of order 2, then G is abelian.

Solution: Let a, b \in G such that a \neq e, b \neq e

Then $a^2 = e$, $b^2 = e$.

Also $ab \in G$ and so $(ab)^2 = e$

Now $(ab)^2 = e$

 \Rightarrow ab ab = e

 \Rightarrow a (ab ab) = a e b

 \Rightarrow a² ba b² = ab

 \Rightarrow e ba e = ab

 \Rightarrow ba = ab

Hence G is abelian

Problem -2: If a, b be any two elements of a group G, then ab and ba have the same order.

Solution: ab = e(ab), where e is the identity of G = $(b^{-1}b)$ (ab), since $b^{-1}b = e$.

Thus $ab = b^{-1}(ba) b$

Now $o(ba) = o[b^{-1}(ba)b] = o(ab)$.

Hence, ab and ba have the same order.

Problem: If a, b be any two elements of a group G such that $a^5 = e$ and $aba^{-1} = b^2$, where e is the identity of G. Show that o(b) = 1 or o(b) = 31.

Solution: We have, ab $a^{-1} = b^2$ -----(1)

 \Rightarrow o (b)|31. Since 31 is a prime number.

We have o(b) = 1 or, o(b) = 31.