Problem -1: Show that if every element of the group G except the identity element is of order 2, then G is abelian. Solution: Let a, b \in G such that a \neq e, b \neq e Then $a^2 = e$, $b^2 = e$. Also $ab \in G$ and so $(ab)^2 = e$ Now $(ab)^2 = e$ \Rightarrow ab ab = e \Rightarrow a (ab ab) = a e b \Rightarrow a² ba b² = ab \Rightarrow e ba e = ab \Rightarrow ba = ab Hence G is abelian Problem -2: If a, b be any two elements of a group G, then ab and ba have the same order. Solution: ab = e(ab), where e is the identity of G = $(b^{-1}b)$ (ab), since $b^{-1}b = e$. Thus $ab = b^{-1}(ba) b$ Now $o(ba) = o[b^{-1}(ba)b] = o(ab)$. Hence, ab and ba have the same order. Problem: If a, b be any two elements of a group G such that $a^5 = e$ and $aba^{-1} = b^2$, where e is the identity of G. Show that o(b) = 1 or o(b) = 31. Solution: We have, ab $a^{-1} = b^2$ -----(1) \Rightarrow o (b)|31. Since 31 is a prime number. We have o(b) = 1 or, o(b) = 31.